Wide Area Computation
Luca Cardelli

Microsoft Research
Valladolid 2000-11-10

L ANs and (Traditional) Distributed Computing

Wide Area Networks

®
‘ llllllll “

3 @

N

@ : .
- o O\

.. W s

7

@ ..'~
o . ‘ ®
o

WAN Characteristics

Internet/Web: a federated WAN infrastructure that spans
the planet. We would like to program it.

Unfortunately, federated WANSs violate many familiar
assumptions about the behavior of distributed systems.

Three phenomena that remain largely hidden in LANSs
become readily observable:

 Virtual locations.

» Physical locations.

 Bandwidth fluctuations.

Another phenomenon becomes unobservable:

e Failures.

Mobile Computing

e (Software) Active computations move around.

e (Hardware) Mobile devices transport active computations.

E ;? AF81

EU

CDG
AANS
SFO

Connectivity Depends on Location

e Tunneling.
e Accidental disconnection (bad infrastructure, solar flares).
 Intentional disconnection (privacy, security, quiet).

>

Connectivity Depends on Location

e Tunneling.
e Accidental disconnection (bad infrastructure, solar flares).
 Intentional disconnection (privacy, security, quiet).

Connectivity Depends on Location

e Tunneling.
e Accidental disconnection (bad infrastructure, solar flares).
 Intentional disconnection (privacy, security, quiet).

Connectivity Depends on Proximity

 No remote real-time control.

* No secure (unencrypted) remote links.

O_O Proximity
O— - e _O Physical Distance

O otolocess .O Virtual Distance

Related Work

* Broadly classifiable in two categories:
* Agents (Actors, Process Calculi, Telescript, etc.)
e Spaces (Linda, Distributed Lindas, JavaSpace, etc.)

e With our work on Ambients, we aim to unify and extend
those basic concepts.

Modeling Mobility: Barriers
Locality: Barrier topology.

e Cf. failure semantics, named processes.

Process mobility: Barrier crossing.
* Cf. name passing (7), process passing (CHOCS).

Security: (In)ability to cross barriers.
* Cf. cryptography (Spi), flow control (SLAM)

Interaction: Shared ether within a barrier.

» No action at a distance. No global channels. No preservation of
connectivity (channels, tethers) across barriers.

Approach

We want to capture in an abstract way, notions of locality,
of mobility, and of ability to cross barriers.

An ambient 1s a place, delimited by a boundary, where
computation happens.

Ambients have a name, a collection of local processes, and
a collection of subambients.

Ambients can move in an out of other ambients, subject to
capabilities that are associated with ambient names.

Ambient names are unforgeable (as in T and sp1).

The Ambient Calculus

P ::= Processes M ::= Messages
(va) P new name n in a scope n name
1 inactivity inM entry capability
PIP’ parallel out M exit capability
\p replication open M open capability
M[P] ambient € empty path
M.P exercise a capability M.M’ composite path

(n).P input locally, bind to n
(M) output locally (async)

The Folder Calculus

* A graphical office metaphor to explain the ambient
calculus.

e A precise metaphor, isomorphic to the formal ambient
calculus.

e Based on wide-area computation principles: locality,
mobility, nested domains, asynchronous communication,
authentication.

Folders (Nested Domains)

e Folders have a folder name n,

* And have active contents P, including:
e Hierarchical data, and computations (processes/“gremlins”™).

e Primitives for mobility and communication.

Enter Reduction (Mobility)

Enter Reduction (Mobility)

Exit Reduction (Mobility)

Exit Reduction (Mobility)

Open Reduction (Assimilation)

Open Reduction (Assimilation)

Copy Reduction (Iteration/Recursion)

e Unlimited (on-demand) replication:

Tie =

e P can be any folder or configuration, but it 1s not “running”
until 1t 1s replicated.

Copy Reduction (Iteration/Recursion)

e Unlimited (on-demand) replication:

e P can be any folder or configuration, but it 1s not “running”
until 1t 1s replicated.

Rubber Stamps (Authentication)

é ; Enclosing all

) 2 occurrences of
“this” n.

L]
OOOOOOOOOOOOOOOOOOOOOOOOOO

e Rubber stamps give authenticity to folders.

e (Copiers are unable to accurately replicate rubber stamps.)

e Scoping Rules:

[]

00000000000000000000000000
° L[]
OOOOOOOOOOOOOOOOOOOOOOOOOO

Allowed Forbidden

Post-It Notes (Local Communication)

e A Post-It Note (Nameless file / Asynchronous message):

e A gremlin grabbing (reading and removing) a note:

)

e Read reduction:

)

Post-It Notes (Local Communication)

e A Post-It Note (Nameless file / Asynchronous message):

e A gremlin grabbing (reading and removing) a note:

)

e Read reduction:

P{M}

Messages (Names or Capabilities)

* A message M can be either:
* The name of a folder (danger: spoofing, killing):

) [openxor)| HEY

Messages (Names or Capabilities)

* A message M can be either:
* The name of a folder (danger: spoofing, killing):

2 -
1) Eopenor) H)

A capability (no danger of recovering the full name):

=)

Messages (Names or Capabilities))

* A message M can be either:
* The name of a folder (danger: spoofing, killing):

B =

L] X opean]] ‘ openn@

A capability (no danger of recovering the full name):

Messages (Names or Capabilities)

* A message M can be either:

* The name of a folder (danger: spoofing, killing):

D iy =

) [openxor)| HEY

n

open n @

* A capability (no danger of recovering the full name):

Leaves of the Syntax

.

e Inactive gremlin:

e Garbage collection:

.
8

>
i

Example: Message from a to b)

open msg >\

7o)

Example: Message from a to b)

open msg >\

7o)

Example: Message from a to b)

Open

Example: Message from a to b)

Example: Message from a to b

ar

Pla}

Example: Agent Authentication)

out home.
in home

Example: Agent Authentication)

out home.>\
in home
[zl

outg. \p
open

\S =

Example: Agent Authentication)

Example: Agent Authentication)

Example: Agent Authentication)

Example: Agent Authentication)

Example: Agent Authentication)

Example: Agent Authentication

1111 le A Distiller Server

7 - gl Sngail®

Am»l

out inbox.jz
in outbox
open inpu>]] Distill(x)

__J __J-

(—)

Example: A Distiller Server

Z0uthoxN

out inbox.jz
in outbox
Distill(x)

Example: A Distiller Server

out inbox.jz
in outbox
Distill(x)

u

Example: A Distiller Server

Z0uthoxN

out inbox.
in outbox

Distill(x)

Example: A Distiller Server

/distiller
Z0uthoxN

ﬁ-m

Fout inbox.X
in outbox
Distill(x)

out inbox.jz
in outbox
open inpui>]] Distill(x)

__J __J-

Example: A Distiller Server

AistilieN
/iubox\

out inbox.
in outbox

open inpui>]] -[Distill(x)

)k Tk

Example: A Distiller Server

/distiller
/inbox N

out inbox.jz
in outbox
open inpui>]] Distill(x)

__J __J-

Example: A Distiller Server

/distiller

out inbox.jz
in outbox
open inpui>]] Distill(x)

__J __J-

Example: Keys y

Example: Keys y

* Generate a fresh key k.

Example: Keys y

* Generate a fresh key k.
e Encrypt M under k.

Example: Keys y

o)

* Generate a fresh key k.
* Encrypt M under k.
e Decrypt viaopenk ...

Example: Keys

P{M}

* Generate a fresh key k.
* Encrypt M under k.
e Decrypt via open k and read M.

Remarks

e The folder calculus 1s Turing-complete (even without the
I/O operations),

e It’s highly concurrent, with synchronization primitives.

e A type system can be used to make sure that each input
reads only messages of the appropriate type.

* The type of a file 1s associated with the name of the folder that
contains it. All the files in a folder must have the same type.

e Subfolders of a given folder may contain files of different types.

* So we have a heterogeneous data hierarchy, but with well-typed
I/0.

A Flexibly-Typed "File System"

e n: Fol|T] means that n 1s a name for folders that can
contain (or exchange) files (or messages) of type 7. All
folders named n can contain only 7 files/messages.

e Nothing 1s said about the subfolders of folders of name n:
they can have any name and type (and can come and go).

e Mobility 1s totally unconstrained by this type system.

TE msg : F oi[
' ‘ Fol[Shh]I open msg >~ Fol[Shh]]

w:Foliskh] ||| @

P{x} b : Fol|
\) |Fol[Shh]] |

°
°

ooo
oo

Expressiveness

This seems simple-minded, but it 1s very expressive:

Channel types: Ch[T] £ Fol[T\XFol[T]
A channel name 1s a pair of folder names ("buffer" folders
and "packet" folders respectively).

Function types: A—B £ Ch[AXCh|[B]]

A function from A to B 1s (used through) a channel to
which we give an argument of type A and the name of a
channel 1n which to deposit the result of type B.

Agent types:
An agent 1s a mobile process that performs well-typed 1/0O
on channels at different locations.

Mobility Types
* The previous type system can be refined with additional
information, 1in order to constrain mobility.

e A folder may be declared immobile (cannot move on its
own), or locked (cannot be opened). This information can
be tracked statically.

e Application: make sure, at compile-time or a load-time,
that applets cannot move around, or that dangerous
packages cannot be accidentally opened.

Mobility Group Types
« G[T)] (generalizing Fol[T]) 1s the type of the names of group
G, which name folders that can contain messages of type T.

» Assert that folders of group G can enter/exit only folders of group
G,...G, (generalizing sandboxing).

e Assert that a process can open only packages of group G
(generalizing locking).

 New groups can be dynamically created; e.g.: private groups.
This has the effect of statically preventing the accidental escape
of capabilities to third parties.

e Application: enforcement, at compile-time or load-time, of
"mobility policies" and "assimilation policies" for applets.

A Spatial Logic
 We have been looking for ways to express properties of
mobile computations and of mobility protocols. E.g.:
e "Here today, gone tomorrow."
e "Eventually the agent crosses the firewall."
* "Every agent carries a suitcase."
e "Somewhere there 1s a virus."

* "There 1s always at most one folder called n here."

e Solution: devise a process logic that can talk about space
(as well as time).

* This can be seen as a generalization of the mobility types
to less easily checkable (but more interesting) mobility
properties.

Examples of Formulas

e The folder calculus has a spatial structure given by the
nesting of folder: we want a logic that can talk about that
structure:

Formulas
0 (there is nothing here)
n[A] (there is one thing here)

1B (there are two things here)

T (there is anything you want here)

a7} (somewhere down here ¥ holds)

OA (sometime in the future %4 may hold)
A>B (B is satisfied even under an A attack)

* Ex., p parents g: < (p|q|T] | T]IT)
e Ex., m may exit n: n[<m[T]] A O(n[0] | m[T))

Satisfaction

» The logic 1s defined explicitly via a satisfaction relation:
PESA

meaning that the configuration (model) P satisfies the
formula 4.

* For a subset of this relation we have a model-checking
algorithm (1.e., a decision procedure).

e Applications:

* compile-time or load-time checking of interesting properties of
mobile code.

* Enforcement of mobility and/or security policies of mobile code.
Easier properties may be checked by model-checking, harder
ones by theorem-proving or theorem-checking (e.g., proof-
carrying code).

From Calculi to Languages

The ambient calculus 1s a minimal formalism designed for
theoretical study. As such, it 1s not a “programming
language”.

Still, the ambient calculus 1s designed to match

fundamental WAN characteristics.

By building languages on top of a well-understood WAN
semantics, we can be confident that languages will embody
the intended semantics.

We now discuss how ambient characteristics might look
like when extrapolated to programming languages.

WAN Observable Phenomena

e Physical Locations
* (Observable because of the speed of light limit
e Preclude instantaneous actions

* Require mobile code

e Virtual Locations
e (Observable because of administrative domains
e Preclude unfettered actions
* Require security model and disconnected operation

e Variable Connectivity
e Observable because of free-will actions, physical mobility
e Precludes purely static networks

e Requires bandwidth adaptability

e Failures
» Unobservable because of asynchrony, domain walls
* Preclude reliance on others
» Require blocking behavior, transaction model

Wide Area Languages
Languages for Wide Area Networks:

WAN-sound
* No action-at-a-distance assumption
* No continued connectivity assumption

* No security bypasses

WAN-complete

* Able to emulate surfer/roamer behavior

Some steps towards Wide Area Languages:
* Ambient Calculus (with Andy Gordon)
e Service Combinators (with Rowan Davies)
e ... various B2B languages/systems being proposed

Summary of WAL Features

No “hard” pointers.

* Remote references are URLSs, symbolic links, or such.

Migration/Transportation
e Thread migration.
e Data migration.

* Whole-application migration.

Dynamic linking.

* A missing library or plug-in may suddenly show up.

Patient communication.

» Blocking/exactly-once semantics.

Built-1n security primitives.

Current Status

Concepts

e An informal paper describing wide-area computation, the Folder
Calculus, and 1deas for wide-area languages.

Semantics (with Andy Gordon)
* Semantics of the basic Ambient Calculus.
» Techniques for proving equational properties of Ambients.

Type Systems (with Andy Gordon and Giorgio Ghelh)
* A type systems for Ambients, regulating communication.

* Type systems for constraining the diffusion of capabilities and for
regulating mobility.

Logics (with Andy Gordon)

e Describing spatial and temporal Ambient properties.

e Implementation (Multiple strategies)

* A Java applet implementation of the Ambient Calculus, and a
tech report about its thread synchronization algorithm.

e (With Leaf Petersen) Stopping, linearizing, and restarting
Ambient configurations.

e (With Mads Torgesen) Design and implementation of a "large-
scale" Ambient-based programming language.

* (Simon Peyton Jones) Experiments in implementing Ambient
primitives in Concurrent Haskell.

e (Cédric Fournet, Alan Schmitt - INRIA) A distributed
implementation of Ambients in JoCaml.

Conclusions

e The notion of named, hierarchical, mobile entities captures
the structure and properties of computation on wide-area
networks.

e The ambient calculus (exemplified by the folder calculus)
formalizes these notions simply and powerfully.
e It 1s no more complex than common process calcul.

It supports reasoning about mobility and security.

* We believe we have a solid basis for envisioning new
programming methodologies, libraries, and languages for
wide-area computation.

